A Framework for Estimating the Applicability of GAs for Realâ•’World Optimization Problems
نویسنده
چکیده
This paper introduces a methodology for estimating the applicability of a particular Genetic Algorithm (GA) configuration for an arbitrary optimization problem based on run-time data. GAs are increasingly employed to solve complex real-world optimization problems featuring ill-behaved search spaces (e.g., non-continuous, non-convex, non-differentiable) for which traditional algorithms fail. The quality of the optimal solution (i.e., the fitness value of the global optimum) is typically unknown in a real-world problem, making it hard to assess the absolute performance of an algorithm which is being applied to that problem. In other words, with a solution provided by a GA run, there generally lacks a method or a theory to measure how good the solution is. Although many researchers applying GAs have provided experimental results showing their successful applications, those are merely averaged-out, \emph{ad hoc} results. The results cannot represent nor guarantee the usability of the best solutions obtained from a single GA run since the solutions can be very different for each run. Therefore, it is desirable to provide a formalized measurement to estimate the applicability of GAs to real-world problems. This work extends our earlier work on the convergence rate, and proposes an evaluation metric to quantify the applicability of GAs. Through this metric, a degree of convergence can be obtained after each GA run so that researchers and practitioners are able to obtain certain information about the relation between the best solution and all of the feasible solutions. To support the proposed evaluation metric, a series of theorems are formulated from the theory of matrices. Moreover, several experiments are conducted to validate the metric. Disciplines Artificial Intelligence and Robotics This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cs_techreports/222 A Framework for Estimating the Applicability of GAs for Real‐World Optimization Problems Technical Report #09‐19 Hsin‐yi Jiang Department of Computer Science Iowa State University Copyright © Hsin-yi Jiang, 2009. All rights reserved.
منابع مشابه
A framework for estimating the applicability of GAs for real-world optimization problems
Genetic Algorithms (GAs) have been gradually identified as an optimization-problem solver for certain classes of real-world applications. As GAs are increasingly utilized, a foundational study on how well GAs can perform with respect to varying problem domains becomes crucial. Yet, none of the prevalent theoretical studies are built upon the linkage between the theory and application of GAs. Th...
متن کاملMeta-heuristic Algorithms for an Integrated Production-Distribution Planning Problem in a Multi-Objective Supply Chain
In today's globalization, an effective integration of production and distribution plans into a unified framework is crucial for attaining competitive advantage. This paper addresses an integrated multi-product and multi-time period production/distribution planning problem for a two-echelon supply chain subject to the real-world variables and constraints. It is assumed that all transportations a...
متن کاملA Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملMulti-Objective Optimization for Multi-Product Multi-Period Four Echelon Supply Chain Problems Under Uncertainty
The multi-objective optimization for a multi-product multi-period four-echelon supply chain network consisting of manufacturing plants, distribution centers (DCs) and retailers each with uncertain services and uncertain customer nodes are aimed in this paper. The two objectives are minimization of the total supply chain cost and maximization of the average number of products dispatched to custo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014